среда, 16 сентября 2020 г.

Методы выделения и количественного определения белков

Разные белки отличаются друг от друга по своим физико-химическим свойствам и биологической активности. На этих различиях основаны широко используемые в медицине и биотехнологии методы разделения белковых смесей на фракции и выделения отдельных белков. Механизм некоторых из этих методов представлен на рисунке (щёлкните кнопкой мыши по рисунку для его увеличения).

Для разделения белков по молекулярной массе наиболее часто применяют методы гель-фильтрации, ультрацентрифугирования, диализа и диск-электрофореза.

Гель-фильтрация - метод, основанный на различной способности молекул разных размеров проходить через своеобразные «молекулярные сита» - сефадексы - инертные гидратированные полисахаридные материалы, представляющие собой пористые гранулы. Крупные белковые молекулы не способны диффундировать внутрь гранул сефадекса и элюируются (выходят из колонки) в первую очередь. В то же время молекулы небольшого размера проникают через поры гранул, задерживаются в них и движутся в колонке с более низкой скоростью (см. рисунок, вверху слева). Метод гель-фильтрации эффективно используется и при очистке белков от низкомолекулярных примесей.

Ультрацентрифугирование. Метод основывается на измерении скорости седиментации (осаждения) белковых частиц под действием центробежной силы, создаваемой в ультрацентрифуге. Скорость седиментации частиц пропорциональна их молекулярной массе.

Диализ - процесс разделения высокомолекулярных и низкомолекулярных веществ при помощи полупроницаемой мембраны. Белки не способны проходить через такую мембрану, поэтому данный метод применяется для очистки белков от неорганических соединений.

Диск-электрофорез в полиакриламидном геле проводят в присутствии детергента - додецилсульфата натрия (ДСН), маскирующего заряд ионогенных групп в молекуле белка. Поэтому электрофоретическая подвижность белков, связанных с ДСН, будет пропорциональна их молекулярной массе.

На различии белков по электрическому заряду основаны методы высаливания, ионообменной хроматографии, электрофореза, изоэлектрического фокусирования.

Высаливание - процесс осаждения белков из раствора при добавлении сульфата аммония, а также солей щелочных и щелочноземельных металлов, чем больше величина заряда белка, тем более высокая концентрация соли требуется для его осаждения.

Ионообменная хроматография - метод, основанный на взаимодействии заряженных групп белка с ионными группами полимеров-ионообменников. При разделении смеси белков на анионите (например, диэтиламиноэтилцеллюлозе) в первую очередь элюируются положительно заряженные белки, затем - нейтральные и, наконец, отрицательно заряженные белки (см. рисунок, вверху справа). При разделении смеси белков на катионообменнике (например, карбоксиметилцеллюлозе) элюция происходит в обратном порядке.

Электрофорез - метод, основанный на различной скорости движения белков в электрическом поле на различных носителях (бумага, полиакриламидный и крахмальный гели и т.д.) . Эта скорость зависит от величины заряда белка при данном значении рН.

Изоэлектрическое фокусирование - методика проведения электрофореза на колонке или в тонком слое с градиентом рН, создаваемом при помощи синтетических полиаминокарбоновых кислот - амфолинов. Каждый белок разделяемой смеси будет располагаться на колонке в участке со значением рН, соответствующем его изозлектрической точке.

Различная гидрофобность белковых молекул используется при проведении гидрофобной (обращённо-фазовой) хроматографии. В качестве носителя в данном случае применяется силикагель с ковалентно присоединёнными углеводородными радикалами. Чем выше гидрофобность белковой молекулы, тем прочнее она связывается с частицами модифицированного силикагеля. Поэтому при элюции вначале выделяются наиболее гидрофильные белки, а в последнюю очередь - наиболее гидрофобные (см. рисунок, внизу слева).

Способность белков избирательно взаимодействовать с определёнными лигандами составляет основу метода аффинной или биоспецифической хроматографии. Например, для выделения нужного фермента можно использовать адсорбенты, с которыми ковалентно связан его субстрат, кофермент или специфический эффектор; для извлечения из разделяемой смеси гормонов применяют связывание их иммобилизованными рецепторами и наоборот. Наиболее перспективно для выделения белков использование иммуносорбентов на основе моноклональных антител.

При пропускании смеси белков через биоспецифический сорбент нужный белок удерживается аффинной колонкой, в то время как все остальные компоненты проходят через неё, не задерживаясь. Затем осуществляется элюция специфически связанного белка (см. рисунок, внизу справа).

пятница, 4 сентября 2020 г.

Хроматография аминокислот на бумаге

Метод хроматографического разделения смеси аминокислот на бумаге основан на различной растворимости аминокислот в воде и органических растворителях (см. рисунок) .

Хроматография аминокислот на бумаге

Каплю раствора, содержащего смесь аминокислот, наносят на полоску фильтровальной бумаги, которая способна удерживать большое количество воды (неподвижная фаза). Конец полоски опускают в специально подобранный органический растворитель (подвижная фаза). Растворитель поднимается по полоске бумаги и увлекает за собой нанесённые на бумагу аминокислоты. Скорость перемещения аминокислот определяется их растворимостью. Чем больше растворимость аминокислоты в воде и чем меньше её растворимость в органическом растворителе, тем медленнее движется аминокислота вслед за подвижной фазой, и наоборот.

По окончании хроматографии расположение отдельных α-аминокислот на фильтровальной бумаге можно выявить при помощи нингидриновой реакции.

Нингидриновая реакция используется для обнаружения и количественного определения веществ, содержащих α-аминогруппы. При нагревании в присутствии нингидрина происходит окислительное дезаминирование α-аминогрупп аминокислот и пептидов, а молекула нингидрина при этом восстанавливается. Восстановленный нингидрин реагирует с аммиаком и другой молекулой окисленного нингидрина, в результате чего образуется окрашенный комплекс синего или сине-фиолетового цвета:

Ход опыта. К 5 каплям раствора α-аланина добавляют 2 капли 0,5%-ного водного раствора нингидрина и кипятят 1—2 минуты. В пробирке появляется розово-фиолетовое окрашивание, а с течением времени раствор синеет.

Для каждой аминокислоты характерна скорость перемещения, которую выражают с помощью коэффициента Rf. Коэффициентом Rf называют отношение пути, пройденного аминокислотой (от места ее нанесения на бумагу до середины пятна на хроматограмме), к расстоянию от места нанесения смеси аминокислот до фронта растворителя:

,

где а – расстояние от места нанесения раствора смеси аминокислот до середины пятна данной аминокислоты, мм; b – путь, пройденный растворителем, мм. Каждая аминокислота имеет определенное значение коэффициента Rf, которое может меняться в зависимости от вида применяемой бумаги, растворителя, температуры, рН среды и некоторых других факторов (таблица).

Табл. 2. Значения Rf отдельных аминокислот (бумага ватман № 1).

Аминокислоты Растворители
фенол,
насыщенный водой
н-бутиловый спирт –
ледяная уксусная кислота –
вода (4:1:1)

Фенилаланин

0,87 0,66
Лизин 0,82 0,16
Аргинин 0,90 0,18
Гистидин 0,69 0,17
Серин 0,36 0,32
Треонин 0,47 0,36
Глицин 0,41 0,34
Аспарагиновая кислота 0,15 0,33
Глутаминовая кислота 0,25 0,37
Тирозин 0,63 0,53
α-аланин 0,56 0,39
Метионин 0,83 0,58
Триптофан 0,75 0,62
Пролин 0.89 0,50
Лейцин 0,87 0,72
Валин 0,76 0,56
Цистин 0,03 0,13